Bench and Wall Laboratory Shelving Systems: Planning, Materials, and Setup

A well-organized lab is a safe and efficient lab. The backbone of that organization is its bench and wall laboratory shelving systems. These systems provide structure and improve workflow. Bench shelving offers immediate access to frequently used tools and reagents. Wall shelving uses vertical space to store bulk supplies and less-used items, keeping valuable benchtop areas clear for work.

Understanding Your Laboratory Shelving Options

A well-organized laboratory with bench and wall shelving systems storing various scientific equipment and supplies.

alt text: A well-organized laboratory with bench and wall shelving systems storing various scientific equipment and supplies.

Choosing the right lab layout helps improve productivity. A smart shelving plan creates a more ergonomic and streamlined environment. Let’s break down the three main systems.

Bench Shelving Systems

Often called over-bench or reagent shelving, this system mounts directly above a lab workbench. Its purpose is point-of-use storage. When technicians have their most-used items within arm’s reach, they can complete tasks more efficiently.

This setup is ideal for:

  • Repetitive tasks that require the same supplies.
  • High-traffic areas, as it reduces movement.
  • Small labs that need to maximize vertical space.

Wall Shelving Systems

Wall shelving is mounted directly onto a lab’s walls, independent of benchtops. This approach uses vertical space for storage. It is ideal for bulk supplies, larger equipment, and items not used daily. Proper installation is critical to ensure the wall can support the intended weight.

For certain applications, such as cleanrooms, open-frame wire lab shelving is another option to consider for airflow.

Hybrid Rail Systems

A hybrid rail system offers maximum flexibility. These modular setups use horizontal rails mounted to the wall or to bench-connected uprights. From these rails, you can hang and reposition shelves, cabinets, and other accessories.

This adaptability makes hybrid systems a top choice for dynamic labs. They blend the convenience of bench shelving with the high-capacity storage of wall systems.

Your 5-Step Lab Shelving Planning Checklist

Outfitting a new or existing lab requires careful planning. A methodical approach to shelving prevents costly mistakes. It also helps create a safer, more efficient workspace.

Follow this checklist to simplify the process. These steps will help you create a setup perfectly suited to your lab’s operations.

A person using a tape measure to plan the layout of laboratory shelving against a wall.

alt text: A person using a tape measure to plan the layout of laboratory shelving against a wall.

Step 1: Assess Your Space and Utilities

First, measure the dimensions of your space. Record the length and height of the walls where you plan to install shelves. Also, measure the ceiling height to determine the maximum vertical space available for wall-mounted systems.

Next, map out all utilities and obstructions.

  • Electrical outlets
  • Gas and vacuum lines
  • Water faucets and drains
  • Data ports
  • HVAC vents and fire suppression systems

A simple diagram showing these locations will prevent you from blocking access to critical services.

Step 2: Calculate Load Requirements

Every shelf has a weight limit. To avoid overloading, calculate the total weight your shelving will need to support. Make a detailed inventory of everything you plan to store, from glassware to benchtop equipment.

Estimate the weight of each item and sum the total for each shelf section. Always add a safety margin of at least 25% to your final calculation. Overloaded shelves are a serious safety hazard. Always choose shelving rated well above your expected load.

Step 3: Map Your Lab Workflow

Effective shelving makes work easier. Consider the daily routines of your lab. An intuitive layout minimizes wasted movement.

Place frequently used reagents and tools on bench shelving, directly above the relevant workstation. Reserve wall shelving for bulk supplies, archival samples, or equipment that is not used every day. A clear primary workspace is an efficient one.

Step 4: Evaluate Clearance and Accessibility

Safety and accessibility are essential. Your layout must provide adequate clearance for both personnel and equipment. Ensure enough space around instruments for proper ventilation and maintenance. Keep aisles and emergency exit routes clear to comply with local codes.

Consider ergonomics for your team. Shelves that are too high or too low can cause strain and increase the risk of accidents. For public institutions, specific purchasing guidelines may apply. You can review an example of these on the Utah state contract for lab shelving and storage.

Step 5: Choose the Right System Type

With the previous steps completed, you have the information needed to make a choice. The data will guide you to the best system for your lab.

  • Bench Shelving is best for high-turnover items at individual workstations.
  • Wall Shelving is ideal for bulk storage, using vertical space effectively.
  • Hybrid Rail Systems offer the most versatility for evolving labs.

This planning ensures your decision is based on solid data about your space, load, workflow, and safety needs.

Comparing Shelving Materials and Support Structures

A close-up view of adjustable phenolic resin shelves on a steel support structure in a laboratory.

alt text: A close-up view of adjustable phenolic resin shelves on a steel support structure in a laboratory.

The materials you choose for your bench and wall laboratory shelving systems impact longevity and safety. A shelving system has two main parts: the support structure and the shelf surfaces. The structure must be strong, while the surface must withstand daily use and potential spills.

Support Structures: Painted Steel vs. Stainless Steel

The support structure is the backbone of your shelving. It must handle the required weight without failing. The main choices are painted steel and stainless steel.

Painted Steel is a common choice for general lab applications. It is strong, cost-effective, and its powder-coated finish protects against minor scuffs and mild chemicals. For dry storage or electronics testing, painted steel is a practical option. Explore our painted steel casework for complementary solutions.

Stainless Steel is the premium option for harsh environments. It is naturally resistant to rust, corrosion, and many chemicals. This makes it essential for wet labs, cleanrooms, and areas handling aggressive solvents. While it costs more initially, it outlasts other materials in tough settings.

Shelf Surface Materials: Laminate vs. Phenolic Resin

The shelf surface itself must be durable.

Chemical-Resistant Laminate is a practical choice for light-duty, general-purpose use. It is made from layers of resin-bonded paper with a protective top coat. These shelves are suitable for glassware, dry goods, and basic equipment. They are easy to clean but can be damaged by harsh chemicals or moisture. A laminate table top is another application of this material.

Phenolic Resin is a high-performance material. It is created by curing layers of kraft paper saturated in phenolic resin under high heat and pressure. This process creates a solid, non-porous panel.

  • High Chemical Resistance: It withstands a wide range of acids, solvents, and corrosives.
  • Moisture Proof: It does not absorb water, preventing swelling or delaminating.
  • Impact and Scratch Resistant: Its dense composition makes it durable for high-traffic areas.

Due to these properties, phenolic resin is the standard for labs where chemical resistance is critical. You can learn more about why phenolic resin work surfaces are important.

Feature Bench Shelving Wall Shelving Hybrid Rail System
Typical Load Range 50 – 150 lbs/shelf 150 – 250+ lbs/shelf Varies by component
Adjustability High (on uprights) Moderate (fixed brackets) Very High (on rails)
Compatible Work Surfaces Most lab benches Independent of surfaces Benches and walls
Best For Point-of-use storage, small items Bulk supplies, heavy equipment Dynamic labs, changing workflows
Pros Ergonomic, keeps bench clear Maximizes vertical space, high capacity Highly flexible, modular, adaptable
Considerations Bench must support weight Requires strong wall structure Higher initial investment

How to Integrate Shelving with Benches and Casework

An integrated laboratory workstation featuring bench shelving mounted on uprights with casework underneath.

alt text: An integrated laboratory workstation featuring bench shelving mounted on uprights with casework underneath.

A functional lab is a complete system where every piece works together. Integrating shelving with benches and casework is key to creating an efficient and safe space. This transforms individual components into a high-performance environment.

Smart integration requires planning. You must consider structural compatibility, clearance, and workflow.

Mounting Shelving Directly to Lab Benches

Mounting shelving directly onto a lab bench creates an ergonomic workstation. This point-of-use storage keeps essential items readily available. The two most common methods are uprights and rail systems.

  • Upright Systems: These are vertical posts bolted to the back of a workbench. Shelves are mounted to these posts, providing adjustable storage over the work area. Many uprights include channels for running electrical or data cables.
  • Rail Systems: With this method, a horizontal rail is mounted to the uprights. This provides a flexible track for hanging shelves, bins, and other accessories. It is a modular system that allows for quick reconfiguration.

Before installing, confirm the workbench can support the added weight of the shelving and its contents. The connection points must be secure. You can pair shelving with many technical workstations & tables.

Coordinating Wall Shelving with Freestanding Casework

Wall shelving is ideal for bulk supplies and less frequently used items. Place it strategically in relation to your freestanding or mobile laboratory casework. Coordinated placement keeps the lab organized and improves workflows.

Group related items together. For example, install shelves for chemical reagents above the corresponding storage cabinet. This creates a logical zone for chemical handling and reduces transport distance.

A well-planned layout aligns wall shelving with mobile tables and freestanding casework. This allows you to create flexible work zones that adapt to different projects.

Planning for Integrated Services

Modern labs require integrated services like power, data, and gas lines at the bench. When adding shelving, you must plan for how these services will be managed.

Many modern bench and wall laboratory shelving systems are designed with this in mind. Uprights and rail systems often include built-in channels to route wiring and tubing. This keeps cables off the work surface, reducing clutter and improving safety.

Decision Scenarios: Choosing the Right Shelving

Applying these concepts to real-world situations can clarify which system is best for you. Let’s explore several common lab scenarios.

1. University Teaching Lab: The environment requires durable, easy-to-clean surfaces. Solution: Heavy-duty, bench-mounted upright shelving with phenolic resin shelves is ideal. The uprights maximize student workspace, and phenolic resin withstands frequent spills and heavy use.

2. Pharmaceutical R&D Lab: This dynamic setting needs flexibility for changing projects and equipment. Solution: A hybrid rail system is perfect. Wall-mounted rails allow technicians to adjust shelves and accessories quickly. Paired with mobile lab tables, the entire space can be reconfigured easily.

3. Clinical Diagnostics Lab: Strict cleanliness and organization are top priorities to prevent errors. Solution: Stainless steel wall and bench shelving is the standard. Stainless steel resists corrosion and harsh disinfectants. Its non-porous surface is easy to sterilize.

4. Industrial Quality Control Lab: This lab uses heavy benchtop equipment, requiring high load capacity. Solution: A robust bench-mounted system with heavy-gauge steel uprights is necessary. This provides the strength to support heavy instruments, while adjustable shelves organize related samples and standards.

5. Genomics Sequencing Lab: This space has sensitive benchtop sequencers that require stable, dedicated services. Solution: Bench-mounted shelving with integrated service channels is critical. This keeps power and data lines organized and away from the work surface, protecting expensive equipment and delicate workflows.

Maintaining Your Shelving for Safety and Longevity

Proper maintenance is a critical practice. It keeps your shelving systems safe, functional, and reliable. Consistent care prevents premature wear and protects your investment.

By building simple routines into your facility’s operations, you can extend the life of your shelving. This approach helps in reducing total cost of ownership.

Regular Inspection Checklist

Routine visual inspections help catch small issues before they become serious problems. Perform this check monthly or quarterly.

  • Scan for Corrosion and Damage: Look for rust, corrosion, or deep scratches on all steel components.
  • Check Fittings and Fasteners: Ensure all bolts, screws, and brackets are tight and secure.
  • Look for Shelf Warping: Check for any bowing or warping on shelf surfaces, which indicates overloading.
  • Verify Leveling: Make sure the entire unit is stable and does not wobble.

Proper Cleaning Procedures

Using the correct cleaning products is essential for preserving your shelving materials. Always follow the manufacturer’s guidelines.

For painted steel and laminate surfaces, use a mild, non-abrasive detergent and a soft cloth. Avoid harsh chemicals and abrasive pads.

For stainless steel and phenolic resin, stronger disinfectants like isopropyl alcohol are generally safe. Rinse all surfaces with deionized water afterward to prevent residue buildup.

Always defer to your facility’s Environmental Health and Safety (EHS) guidelines for approved cleaning protocols.

Frequently Asked Questions About Lab Shelving

Here are answers to common questions about selecting and using lab shelving.

1. What is the typical load capacity of standard lab shelving?

Standard-duty bench shelving is typically rated for 50 to 150 pounds per shelf. Heavy-duty wall or bench systems can often handle 250 pounds or more per shelf. Always check the manufacturer’s official load rating and include a safety margin of at least 25%.

2. How can I ensure new shelving is compatible with existing benches?

Measure the depth and length of your laboratory work surfaces to ensure the shelving will fit. If using bench-mounted uprights, confirm the work surface is thick enough to support the bolted connection. Check for any obstructions like a rear lip or service chases.

3. What are the key differences between phenolic resin and laminate shelves?

Laminate shelves have a particleboard core with a protective top layer, suitable for dry, light-duty use. Phenolic resin shelves are solid, non-porous panels created under high heat and pressure, offering superior chemical, moisture, and impact resistance for demanding lab environments.

4. Can shelving systems be customized for specialized equipment?

Yes. Most modern shelving systems are modular, allowing you to adjust shelf height and spacing. You can also add accessories like keyboard trays, monitor arms, bin rails, and integrated power strips to customize the setup for your specific needs.

5. What are the installation requirements for wall-mounted systems?

Wall-mounted shelving must be anchored directly into structural supports like wall studs, concrete, or masonry block. Drywall anchors are not sufficient. The system must be perfectly level. Professional installation is highly recommended for safety and stability.

6. How should I clean and disinfect different shelving materials?

For painted steel and laminate, use a mild, non-abrasive detergent. For stainless steel and phenolic resin, you can use stronger disinfectants like isopropyl alcohol. Always rinse with deionized water after cleaning to prevent residue. Follow your facility’s EHS guidelines.

7. What is the difference between bench shelving and reagent shelving?

The terms are often used interchangeably. Both refer to shelving systems mounted directly above a workbench for point-of-use storage of frequently used items, such as chemical reagents, glassware, and small instruments.

8. Are there mobile shelving options available?

Yes. In addition to fixed bench and wall systems, mobile shelving options are available. These units are on casters and provide flexible storage that can be moved as needed, which is ideal for labs with changing layouts or multi-use spaces.

Find the Right Shelving for Your Lab

Choosing the right bench and wall laboratory shelving systems is a critical step in designing a productive and safe lab. By carefully planning your layout, selecting appropriate materials, and ensuring proper integration, you create a workspace that supports efficient workflows for years to come.

Labs USA stocks a wide range of lab furniture, including technical workstations & tables, casework, shelving, and related components. We offer solutions designed for durability and flexibility to meet the demands of any modern laboratory.

Compare your options and find the perfect fit for your facility.
Compare laboratory shelving systems

Ready to plan your lab layout? Our team can help you design a system that meets your specific needs.
Request a quote for your lab

Stainless Steel Countertops for Laboratories

Stainless steel countertops are a key component in many advanced laboratories, from pharmaceutical cleanrooms to university research centers. They provide more than just a surface; they are a critical part of a controlled environment, valued for their durability and hygiene. Making the right choice in material grade, finish, and features is essential for safety, compliance, and long-term performance, especially when paired with integrated stainless steel casework.

This guide explains where stainless steel countertops excel and where other surfaces may be a better fit. It offers practical guidance for lab managers, architects, and facility teams on how to specify the right countertop for a complete laboratory system.

Quick Answer: Why Choose Stainless Steel Countertops?

Stainless steel countertops are the best choice when hygiene, heat resistance, and a non-porous surface are required for your laboratory.

  • Best Environments: Ideal for cleanrooms, sterile processing areas, pharmaceutical labs, and food science applications where microbial control is critical.
  • Common Grades: Grade 304 is the standard for most general lab work, offering excellent durability. Grade 316 is necessary for environments with chlorides, saline solutions, or harsh corrosive agents.
  • Main Watchouts: The material can be vulnerable to certain strong acids and chlorides. It can also scratch or dent under heavy impact.
  • Integration: These work surfaces are often specified with integral sinks and coved backsplashes to create a seamless, easy-to-clean system.

See stainless cabinet and counter options to explore a complete system.

How to Choose a Stainless Steel Countertop: 5-Step Checklist

Selecting the right stainless steel countertop involves a few key decisions. This checklist breaks down the process into five manageable steps to ensure you specify a surface that fits your lab’s needs and integrates with your facility.

A detailed shot of a stainless steel countertop edge profile in a laboratory.

1. Review Chemicals and Disinfectants

First, list all chemicals, cleaning agents, and disinfectants used in your lab protocols. Pay special attention to any products containing chlorides, which can cause corrosion over time. This information will determine if the standard Grade 304 is sufficient or if you need the enhanced corrosion resistance of Grade 316.

2. Check Cleanroom or GMP Requirements

If your lab operates under Good Manufacturing Practice (GMP) guidelines or must meet a specific ISO cleanroom classification, your choices are more defined. These standards often require features like seamless welded construction, coved backsplashes, and specific finishes to eliminate areas where microbes can grow. Ensure your selection meets all regulatory requirements.

3. Evaluate Heat, Impact, and Abrasion Needs

Next, consider the physical demands on the surface. Will heavy equipment be placed on it? Is there a risk of dropping heavy tools or samples? This assessment will help determine the necessary gauge (thickness) of the steel. A thicker gauge provides better resistance to dents and offers a more solid feel.

4. Specify Sink, Backsplash, and Welding Details

Now, define the fabrication details. Do you need an integral sink welded directly into the countertop for a seamless washing station? Is a coved backsplash necessary to contain spills and simplify cleaning? Specify details like welded corners, marine edges to contain liquids, and cutouts for services. These features are critical for creating a functional workspace that integrates with your lab casework.

5. Consider Budget, Lead Time, and System Integration

Finally, balance the upfront cost with the long-term value of a durable, low-maintenance surface. Consider how the countertops will fit with your base cabinets and any overhead shelving. Proper planning ensures that all components work together to create an efficient and professional lab environment.

Comparing Stainless Steel with Other Lab Surfaces

While stainless steel is an excellent choice for many labs, it is important to compare it against alternatives like epoxy and phenolic resin. Each material offers a unique set of strengths and weaknesses. Understanding these differences helps you make the right long-term investment for your facility.

Different samples of laboratory countertop materials, including stainless steel, epoxy resin, and phenolic resin, arranged for comparison.

Stainless Steel Countertops

When sterility and heat tolerance are essential, stainless steel is the standard. Its non-porous surface prevents microbial growth, making it easy to sanitize. This quality makes it a top choice in pharmaceutical labs, biological cleanrooms, and food science applications. It is often specified with matching stainless lab storage.

  • Strengths: Excellent heat resistance, non-porous, ideal for sterile environments, and highly durable.
  • Limitations: Can be damaged by chlorides and certain strong acids. It can also scratch or dent.
  • Best Uses: Cleanrooms, sterile processing areas, surgical suites, and labs requiring frequent high-temperature sterilization.
  • Cost/Lead Time: Mid to high-tier cost. Lead time depends on fabrication complexity.
  • Choose this if: Microbial control, heat resistance, and a sterile, non-porous work environment are your main concerns.

Epoxy Resin

Epoxy resin is known for its exceptional chemical resistance. It is a solid, one-piece material created by casting and curing a compound of resin, silica, and hardeners. The result is a durable slab suitable for demanding applications.

  • Strengths: Superior resistance to a wide range of chemicals, including acids, bases, and solvents. It also has good heat resistance.
  • Limitations: Can be scratched or chipped by sharp impacts. It is also very heavy, which affects the supporting casework.
  • Best Uses: Chemistry labs, research facilities, and environments with exposure to corrosive chemicals.
  • Cost/Lead Time: High-tier cost, often with longer lead times.
  • Choose this if: Your lab handles a diverse mix of aggressive chemicals and requires the highest level of chemical resistance.

Phenolic Resin

Phenolic resin countertops offer a practical and versatile option. They are made by pressing layers of kraft paper saturated with phenolic resin under high heat and pressure. The resulting surface is lightweight, durable, and chemical-resistant.

  • Strengths: Good all-around chemical and moisture resistance. It is also durable against wear and scratches.
  • Limitations: Does not perform as well as epoxy or stainless steel under sustained, extreme heat.
  • Best Uses: K-12 and university teaching labs, clinical labs, and general-purpose research facilities.
  • Cost/Lead Time: Mid-tier cost, generally more affordable than epoxy, with moderate lead times.
  • Choose this if: You need a durable, chemical-resistant surface for a general-purpose lab with a moderate budget.

Solid Surface or Ceramic

This category includes materials like modified acrylics and solid ceramics, chosen for their appearance and specific performance traits. They are less common in heavy-duty labs but are suitable for certain applications.

  • Strengths: Solid surfaces can be seamless and repairable if scratched. Ceramics offer extreme scratch and stain resistance.
  • Limitations: Solid surfaces have lower heat and chemical resistance. Ceramics can be brittle and may chip.
  • Best Uses: Light-duty labs, product testing areas, and spaces where appearance is a priority and chemical exposure is low.
  • Cost/Lead Time: Varies from mid to very high-tier, with custom fabrication affecting lead times.
  • Choose this if: Aesthetics, repairability, or scratch resistance are more important than broad chemical or heat resistance.

Comparison of Laboratory Countertop Materials

Material Heat Resistance Chemical Resistance Cleanability Microbial Resistance Impact/Dent Resistance Typical Use Cases Approx. Cost Tier Notes
Stainless Steel Excellent Good to Excellent Excellent Excellent Good Sterile, pharma, cleanrooms Mid to High Grade 316 for high chloride exposure.
Epoxy Resin Very Good Excellent Very Good Very Good Fair to Good Heavy chemistry, R&D High Very heavy material.
Phenolic Resin Good Good Very Good Very Good Excellent Teaching labs, clinical Mid Good balance of cost and performance.
Solid Surface/Ceramic Fair to Excellent Poor to Excellent Excellent Excellent Poor to Good Light-duty, aesthetic areas Mid to Very High Performance varies greatly by type.

Specifying Stainless Steel Countertops

Getting the specifications right is critical for performance and longevity. These details determine how well your countertops will withstand chemical spills, cleaning cycles, and daily use in a busy lab.

A close-up of a stainless steel countertop in a modern laboratory setting, highlighting its clean finish and integrated sink.

304 vs. 316 Grade Selection

The grade of stainless steel should be based on the chemicals used in your facility.

  • Type 304: The industry standard for most general lab applications. It offers excellent resistance to a wide range of common chemicals and is a cost-effective choice for labs without heavy chloride exposure.
  • Type 316: Contains molybdenum, which provides superior resistance to chlorides, saline solutions, and other corrosive agents. Specify Type 316 if your protocols involve bleach, deionized water, or saltwater.

Gauge and Finish Options

The steel’s thickness (gauge) and surface finish affect both durability and ease of cleaning. A lower gauge number means thicker, stronger steel.

  • Gauge: For most lab work, 16-gauge steel offers a good balance of durability and cost. For heavy equipment or high-impact areas, 14-gauge provides better dent resistance.
  • Finish: The #4 brushed finish is common in labs. Its uniform grain helps hide minor scratches and reduces glare. A matte or non-directional finish can also be used to conceal wear over time.

Fabrication Details

Proper fabrication transforms a sheet of metal into a high-performance work surface.

  • Sound-Deadening Underlayment: A core bonded to the steel’s underside dampens noise from equipment and adds rigidity.
  • Coved Backsplashes and Integral Sinks: A coved backsplash creates a smooth, curved transition from the countertop to the wall, eliminating corners where dirt can collect. An integral sink is welded into the countertop to form a seamless unit that is easy to sanitize.
  • Welded Corners: All corners should be fully welded and ground smooth to create a continuous, non-porous surface that prevents microbial growth. This is essential for cleanroom worktops and other GMP compliant surfaces.
  • Cleanroom Compatibility: These features make stainless lab countertops ideal for sterile environments. They are a core component of comprehensive stainless cleanroom furniture systems.

Integrating with Cabinets, Benches, and Shelving

Stainless steel countertops should be integrated with a complete laboratory furniture system. They can be paired with stainless steel or painted steel base cabinets, mobile bases, or adjustable frames depending on the lab’s needs. Proper integration ensures a stable, functional, and cohesive workspace.

When planning your lab, consider how the countertops will work with different cabinet configurations and laboratory shelving systems. Sourcing all components from approved lab furniture vendors ensures compatibility and simplifies the installation process. A unified system, including matching stainless base cabinets, creates a professional and efficient lab environment.

Maintenance and Cleaning

Proper maintenance protects your investment and ensures your stainless steel countertops perform for years. Follow these simple guidelines for daily care and long-term upkeep.

  • Daily Cleaning: Wipe down surfaces with a soft cloth, water, and a mild detergent. Always clean in the direction of the metal’s grain to avoid swirl marks.
  • Compatible Disinfectants: Most common lab disinfectants, such as 70% isopropyl alcohol and quaternary ammonium compounds, are safe for stainless steel.
  • Avoid Chlorides: Avoid prolonged contact with chloride-based cleaners like bleach. If used, dilute the solution, rinse the surface thoroughly with clean water, and wipe it completely dry.
  • Remove Stains: “Tea staining” or minor discoloration can be removed with a specialized stainless steel cleaner.
  • Protect Against Dents: Avoid dropping heavy or sharp objects on the surface. Use cutting boards for any slicing or sharp tool work.
  • Periodic Inspection: Regularly check fasteners and welded seams to ensure they remain secure and intact, especially around sinks and integrated equipment.
  • 316 vs. 304: If frequent exposure to harsh disinfectants or corrosive agents is unavoidable, specifying Grade 316 from the start is the best long-term solution.

Following these practices will maintain the appearance and integrity of your stainless cabinet options and countertops.

Decision Scenarios and Use Cases

Connecting material specifications to real-world applications can simplify your decision. Here are common scenarios with countertop recommendations.

  • ISO-Rated Cleanroom with Frequent Sanitization: An ISO-rated cleanroom requires a sterile environment. Recommendation: Choose 316 stainless steel with fully welded corners, integral sinks, and coved backsplashes. This setup is part of a complete system of stainless cleanroom furniture.
  • High Chloride or Saline Environment: A marine biology lab works with seawater and is located near the coast. Recommendation: Grade 316 stainless steel is required to resist corrosion from chlorides. Standard 304 stainless would degrade in this environment.
  • Heavy Acid Use but Not Chloride-Rich: A university chemistry lab uses strong acids but few chlorides. Recommendation: Compare 304 stainless steel vs. epoxy resin. Epoxy offers broader chemical resistance for heavy acid use, but 304 stainless is a durable option for moderate use.
  • Teaching Lab with a Limited Budget: A general science lab for students needs a durable, multi-purpose surface. Recommendation: Consider phenolic resin. It offers a good balance of chemical resistance, durability, and cost for this type of environment.
  • Food and Beverage QA with Washdowns: A quality assurance lab requires hygienic surfaces that can withstand daily high-pressure washdowns. Recommendation: 304 stainless steel is the standard. Specify countertops with a slight slope and marine edges to manage water runoff and ensure easy cleaning.

Frequently Asked Questions

Here are answers to common questions about specifying and maintaining stainless steel lab countertops.

1. What is the main difference between 304 and 316 stainless for lab countertops?

The key difference is corrosion resistance. Type 304 is the industry standard for general lab use. Type 316 contains molybdenum, which provides superior resistance to chlorides, saline solutions, and harsh disinfectants. Choose 316 if your lab uses these agents regularly.

2. Are welded seams required around sinks?

Yes, for lab applications, welded seams are essential. An integral sink welded into the countertop creates a seamless, non-porous surface. This design eliminates gaps where bacteria can grow, making it easier to maintain a sterile environment.

3. Which disinfectants are safe for stainless counters?

Most common lab disinfectants, including 70% isopropyl alcohol and quaternary ammonium compounds, are safe. Avoid prolonged exposure to chloride-based cleaners like bleach. If you must use them, rinse the surface thoroughly with clean water and dry it immediately.

4. How can I avoid scratches and swirl marks?

Always clean in the direction of the metal’s grain, which are the faint parallel lines in a #4 brushed finish. Use a soft cloth and avoid abrasive scouring pads or powders. This simple technique helps minimize the appearance of minor scratches.

5. Can stainless counters be grounded for ESD?

Yes, stainless steel countertops can be grounded for Electrostatic Discharge (ESD) protection. A grounding wire connects the countertop to a common point ground, safely dissipating any static buildup to protect sensitive electronic components.

6. What thickness or gauge should I specify?

For most lab applications, 16-gauge stainless steel provides a good balance of durability and cost. If the countertop will support heavy equipment or is in a high-impact area, upgrading to a thicker 14-gauge is recommended for better dent resistance. Ensure the gauge is appropriate for the supporting stainless steel laboratory casework.

7. How do I source a complete laboratory system?

To ensure all components are compatible, it is best to work with established manufacturing partners who can supply an integrated system of countertops, casework, and shelving. This approach simplifies specification, procurement, and installation.

Conclusion

Stainless steel countertops are the ideal choice for laboratories where hygiene, durability, and resistance to heat and moisture are top priorities. Their non-porous surface is unmatched for sterile applications, cleanrooms, and GMP-compliant facilities. By carefully selecting the right grade, finish, and fabrication details, you can create a high-performance workspace that supports safe and efficient lab operations for decades.

Ready to find the right surface for your laboratory?

Laboratory Wood Casework: How It Compares to Steel and Specialty Options

Laboratory wood casework offers a distinct combination of aesthetics, acoustic performance, and cost-effectiveness for many lab environments. While steel is often considered the default, understanding where wood fits helps lab managers and specifiers make smarter decisions. For teaching labs, dry research areas, and instrument rooms, wood provides a durable and appealing alternative to metal or plastic systems, balancing performance with budget and design goals. Explore our full range of lab casework to see all available configurations.


Casework Comparison Snapshot

  • Choose Wood Casework for teaching labs, dry research spaces, instrument rooms, and office areas where aesthetics, noise reduction, and budget are key factors. It provides good performance in environments with light chemical and moisture exposure.

  • Choose Steel or Stainless Steel for wet labs, corrosive environments, or sterile spaces requiring frequent washdowns and harsh disinfection. Steel offers superior durability, while stainless steel provides the ultimate chemical and moisture resistance.

  • Choose Specialty Plastics or Phenolic Frames for areas with extreme humidity or constant exposure to a wide range of harsh chemicals where a non-metallic solution is preferred.

  • For detailed material criteria, review our casework specifications.


How to Choose Laboratory Casework in 5 Checks

Selecting the right casework material is a critical decision that impacts lab safety, workflow, and long-term budget. This five-step checklist provides a framework to match the material to the real-world demands of your facility.

1. Chemical and Disinfectant Exposure

First, identify all chemicals, solvents, and disinfectants used regularly. The type and frequency of exposure are the most important factors in your decision.

  • Light Exposure: For mild acids, bases, and standard cleaners, wood casework with a factory-applied chemical-resistant finish is a suitable and cost-effective choice.

  • Moderate to Heavy Exposure: If protocols involve frequent use of harsh solvents or aggressive disinfectants, painted steel provides a more durable surface.

  • Constant Harsh Exposure: For environments with continuous contact with corrosive agents, stainless steel or specialty phenolic casework is necessary.

Remember that the work surface takes the most abuse. Pairing wood base cabinets with durable phenolic work surfaces is a common strategy to enhance durability where it matters most.

2. Humidity and Moisture Control

Assess the ambient moisture conditions in your lab. Wood is more sensitive to humidity changes than steel or composite materials.

While modern wood casework performs well in labs with stable HVAC systems, it is not suitable for high-humidity areas, spaces around sinks with frequent splashes, or rooms requiring regular washdowns. In these cases, painted steel, stainless steel, or phenolic resin is the correct choice. The importance of phenolic resins is clear in these environments, as they are completely immune to moisture damage.

3. Impact, Abrasion, and Noise Considerations

Consider the physical demands of your lab. Will heavy carts bump into cabinets? How much noise can your workspace tolerate?

  • Noise Profile: Wood naturally dampens sound, creating a quieter work environment. This is a significant advantage in instrument rooms or open-plan labs where focus is essential.

  • Impact Resistance: Steel is very durable but its painted finish can chip, exposing the metal to potential rust. Wood is often more forgiving with minor impacts and is easier to repair cosmetically.

4. Flexibility and Reconfiguration Needs

Think about your lab's future. If you anticipate changes in workflow, equipment, or layout, choose a system that can adapt.

Traditional, fixed casework offers maximum stability but locks you into a single configuration. For labs that require agility, reconfigurable wood benches and mobile cabinets provide the flexibility to change layouts easily without major construction.

5. Budget, Lead Time, and Aesthetic Goals

Finally, align your technical requirements with project constraints. Wood casework generally has a lower upfront cost than stainless steel or phenolic systems.

From a design perspective, wood offers a warmer, less clinical appearance, which is often preferred in educational and some research settings. Lead times vary by material and customization, so confirm availability early in the planning phase to align with your project timeline.

Side-by-Side Analysis: Wood vs. Steel vs. Stainless vs. Specialty

Each casework material offers a unique profile of strengths and limitations. This direct comparison helps clarify which option best fits your lab's specific application, budget, and performance needs.

Wood Casework

  • What It Is: Cabinets and benches constructed from hardwood veneer plywood or industrial-grade particleboard, protected by a factory-applied, chemical-resistant UV finish.

  • Top Strengths: Excellent aesthetics, natural sound dampening, cost-effective, and easily repairable for minor cosmetic damage.

  • Limits: Not suitable for high-moisture, corrosive, or sterile environments requiring frequent washdowns. Performance depends heavily on the integrity of the finish.

  • Best Environments: Teaching labs, dry research labs, physics labs, instrument rooms, and office areas within a lab suite.

  • Maintenance: Clean with mild detergents. Avoid abrasive cleaners and wipe up all spills promptly to protect the finish.

  • Cost & Lead Time: Generally the most budget-friendly option with competitive lead times for standard configurations.

  • Choose this if… you need a functional, quiet, and visually appealing solution for a dry lab environment on a controlled budget.

Painted Steel Casework

  • What It Is: Heavy-gauge steel, typically fully welded for strength, with a durable, baked-on powder-coat epoxy paint finish.

  • Top Strengths: High durability, excellent structural strength, very good chemical resistance, and an easy-to-clean, non-porous surface.

  • Limits: The painted finish can be chipped or scratched, exposing the underlying steel to rust. It can be noisy (clanging drawers and doors).

  • Best Environments: General chemistry labs, industrial R&D facilities, and any high-traffic area requiring robust, long-lasting furniture.

  • Maintenance: Inspect regularly for deep scratches and touch them up to prevent corrosion. Clean with standard lab-grade disinfectants.

  • Cost & Lead Time: Mid-range cost, typically more than wood but less than stainless steel. Lead times can vary.

  • Choose this if… your priority is durability and chemical resistance for a general-purpose lab.

Stainless Steel Casework

  • What It Is: Casework constructed from Type 304 or Type 316 stainless steel with welded and polished seams for a seamless, non-porous surface.

  • Top Strengths: The highest level of corrosion, moisture, and heat resistance. It is the standard for sterile and hygienic applications.

  • Limits: The highest initial cost. It can be dented or scratched and tends to show fingerprints.

  • Best Environments: Cleanrooms, pharmaceutical labs, vivariums, biological labs, and any facility requiring aggressive, frequent washdowns.

  • Maintenance: Can be cleaned with nearly any harsh disinfectant or sterilizing agent. Use non-abrasive cleaners to avoid scratching.

  • Cost & Lead Time: The most expensive option, often with longer lead times due to specialized fabrication.

  • Choose this if… sterility, corrosion resistance, and cleanability are non-negotiable and budget is a secondary concern.

Specialty Plastics or Phenolic Frames

  • What It Is: Casework built from solid phenolic resin, a composite material created by fusing layers of resin-saturated paper under high heat and pressure.

  • Top Strengths: Completely waterproof and immune to a very broad range of chemicals, acids, and solvents. Will not delaminate, swell, or corrode.

  • Limits: Higher cost than wood or painted steel. May have lower load-bearing capacity compared to fully welded steel frames.

  • Best Environments: Highly corrosive labs, high-humidity rooms, and applications where guaranteed moisture protection is essential.

  • Maintenance: Extremely low maintenance. Can be cleaned with harsh chemicals without risk of damage.

  • Cost & Lead Time: A premium price point, higher than painted steel but sometimes competitive with stainless steel.

  • Choose this if… you need absolute protection against moisture and a wide array of chemicals in a non-metallic form.

You can find more detailed information on all casework configurations to compare these options further.


HTML Comparison Table

Feature Wood Painted Steel Stainless Steel Specialty Phenolic/Plastics
Chemical Resistance Good (Finish-Dependent) Very Good Excellent Excellent
Moisture Resistance Poor Good Excellent Excellent
Cleanability Good Excellent Excellent Excellent
Impact and Noise Excellent (Quiet) Good (Noisy) Fair (Dents) Very Good (Quiet)
Flexibility Excellent Good Fair Good
Typical Use Cases Teaching Labs, Instrument Rooms, Dry Research General Chemistry, Industrial R&D Cleanrooms, Sterile Labs, Washdown Areas High Humidity, Corrosive Environments
Approx. Cost Tier $ $$ $$$$ $$$
Notes Warm aesthetic, easy to repair cosmetically. Workhorse durability, finish can chip. Ultimate corrosion resistance, highest cost. Completely waterproof, non-metallic.

Where Wood Shines: Ideal Applications

Wood casework is a strategic choice in many modern laboratories where its unique advantages align with the facility's goals.

Teaching Labs

In educational settings, wood creates a warmer, more inviting atmosphere than steel. Its lower cost is also a significant benefit for institutions with limited budgets. The durable finish is sufficient for the light chemical use typical in teaching environments.

Offices within Labs

For integrated lab and office spaces, wood provides a seamless design transition, creating a cohesive and less clinical work environment that promotes collaboration.

Dry Research and Instrument Rooms

For physics, electronics, and instrumentation labs, wood is an excellent choice. Its natural sound-dampening qualities help reduce ambient noise from equipment, creating a quieter and more focused atmosphere for precise work. This is especially true for facilities using modular wood workspaces for reconfigurable layouts.

Spaces Where Acoustics and Aesthetics Matter

When the goal is to create a professional, comfortable, and quiet workspace, the aesthetic warmth and noise-absorbing properties of wood make it a superior choice over metal alternatives.

When to Step Up from Wood

Wood casework has its limits. In certain demanding environments, upgrading to steel or specialty materials is essential for safety, compliance, and longevity.

Choose painted steel, stainless steel, or phenolic frames for:

  • Corrosive Environments: Where strong acids, bases, or solvents are used frequently.

  • Frequent Harsh Disinfectants: If protocols require daily use of aggressive cleaning agents that could degrade a wood finish over time. For worktops that must handle this abuse, phenolic work surfaces are a great choice.

  • High Humidity or Washdown Rooms: Any area with constant moisture will cause wood to fail. Stainless steel and phenolic are the best choices here due to the importance of phenolic resins in wet applications.

Specifying Wood Casework

Proper specification is key to ensuring performance and longevity. For architects, lab planners, and facility managers, focusing on the right details is crucial.

Key specification points include:

  • Substrate and Veneer: Specify hardwood veneer plywood or industrial-grade particleboard for stability.

  • Finish System: Mandate a factory-applied, multi-layer, chemical-resistant UV finish for protection.

  • Edge Banding: Require high-quality, durable edge banding to seal the core from moisture.

  • Hardware Quality: Specify heavy-duty, full-extension drawer slides and institutional-grade hinges.

  • Drawer Load Ratings: Ensure drawers are rated for the anticipated weight of lab equipment and supplies.

  • Specialty Units: Include details for sink bases with moisture-resistant properties, service voids for plumbing and wiring, and appropriate seismic anchoring where required.

For complete technical guidance, refer to our detailed spec guidelines. Our full line of wood casework options meets these stringent requirements.

Integration with Benches and Tops

Wood base cabinets are often paired with different benching systems and work surfaces to create a tailored solution.

Wood bases can be integrated into reconfigurable wood benches that allow for easy layout changes. This modular approach provides long-term flexibility.

For work surfaces, pairing wood bases with high-performance tops is a smart strategy:

  • Phenolic Resin: The top choice for chemical and disinfectant resistance. Pair with wood bases for a durable yet cost-effective workstation.

  • High-Pressure Laminate (HPL): A budget-friendly option for dry labs, write-up stations, and areas with very light chemical exposure.

This hybrid approach allows you to invest in performance where it is most needed—on the worktop—while gaining the benefits of wood for the base lab casework.

Decision Scenarios: Mini Use-Case Guides

Here are five common scenarios to help guide your decision:

  1. A high school teaching lab with light chemical use.

    • Decision: Wood bases with HPL or phenolic tops. This balances budget, durability, and provides a warm, inviting learning environment.
  2. A mixed office and lab suite needing a quiet, professional finish.

    • Decision: Wood casework throughout. This creates a cohesive aesthetic and the sound-dampening properties of wood reduce workplace noise.
  3. An industrial QC lab with a corrosive environment and frequent washdowns.

    • Decision: Stainless steel casework. This is a non-negotiable choice for safety and longevity in such a harsh environment.
  4. A dry instrument room with equipment that is frequently reconfigured.

    • Decision: Modular wood workspaces on mobile frames. This provides maximum flexibility to adapt the layout as needs change.
  5. A biosafety lab with constant use of harsh disinfectants.

    • Decision: Consider painted steel or phenolic frames with solid phenolic tops. These materials can withstand aggressive cleaning protocols without degrading.

Maintenance and Lifecycle

Proper maintenance ensures your wood casework lasts for decades.

  • Cleaning: Use mild, non-abrasive detergents compatible with the wood finish. Always refer to EHS guidelines for approved cleaning agents.

  • Humidity Control: Maintain a stable indoor climate with a modern HVAC system to prevent wood from swelling or shrinking.

  • Repairs: Minor scratches or dings in the finish can often be touched up, extending the cosmetic life of the cabinets.

  • Hardware Checks: Periodically inspect and tighten hinges and drawer slides to ensure proper function.

  • Replacement Triggers: Consider replacement if there is significant damage to the substrate from moisture or chemical exposure, or if hardware is failing beyond repair.

Consult our casework specifications for more on material care.

Frequently Asked Questions

1. Is laboratory wood casework durable enough for my lab?
Yes, for the right application. It is engineered with a high-density core and a chemical-resistant UV finish to withstand the demands of teaching, dry research, and instrument labs. It is not intended for highly corrosive or wet environments.

2. How does wood handle daily disinfecting?
It holds up well to standard, non-abrasive lab disinfectants. The chemical-resistant finish protects the wood, but harsh agents like bleach or abrasive cleaners should be avoided. Always wipe surfaces dry after cleaning.

3. Can I pair wood bases with phenolic worktops?
Absolutely. This is a very common and cost-effective combination. It provides the superior chemical resistance of phenolic on the work surface while retaining the aesthetic and acoustic benefits of wood for the base cabinets.

4. What about humidity and long-term stability?
In labs with stable HVAC systems, modern wood casework is very stable. The core materials and sealed edges are designed to resist typical ambient moisture changes. However, it is not suitable for high-humidity rooms or areas subject to washdowns.

5. Can wood be part of a modular lab plan?
Yes. Wood is an excellent material for flexible lab designs. Systems featuring modular wood workspaces allow labs to adapt layouts easily as research needs evolve.

6. How do lead times for wood casework compare to steel?
Lead times are generally comparable for standard configurations. Highly customized steel or stainless steel systems often have longer lead times. Always confirm current production schedules early in your planning. You can explore all lab casework options with our team.

Your Next Steps

Laboratory wood casework is an excellent choice for facilities that prioritize aesthetics, acoustic comfort, and budget without sacrificing performance in dry, light-duty environments. By matching the material to the application, you can create a functional and inviting workspace. For labs with more demanding chemical or moisture conditions, steel or specialty systems remain the superior option.

Ready to find the right fit for your facility?

Painted Steel Casework: Practical, Durable Storage for Modern Labs

Painted steel casework is a foundational storage system for modern laboratories, offering a balance of durability, cleanability, and cost-effectiveness. It consists of steel cabinets protected by a tough powder-coated finish. This makes it an ideal choice for research, educational, and light industrial labs that need resilient storage without the higher cost of stainless steel. See a wide range of painted steel casework configurations to fit any layout.

Quick Answer: Is Painted Steel Casework Right for Your Lab?

  • When It's Ideal: Best for general research, educational, quality control, and product development labs with moderate chemical use.
  • Key Strengths: High durability, excellent impact resistance, easy to clean and decontaminate, wide range of configurations and colors.
  • Main Limits: Not for constant exposure to harsh, corrosive acids or sterile cleanroom environments where stainless steel is required.
  • Typical Cost Tier: More affordable than stainless steel or phenolic resin, offering a strong lifecycle value.
  • Next Step: See lab casework options.

How to Choose Painted Steel Casework: A 5-Step Checklist

Selecting the right lab storage ensures safety, efficiency, and longevity. Follow this five-step checklist to determine if painted steel casework is the best fit for your facility's needs.

1. Identify Chemicals and Cleaning Agents in Use

First, list the chemicals, reagents, and disinfectants used daily in your lab. While painted steel resists mild acids, bases, solvents, and common cleaners like alcohol or bleach solutions, it is not intended for constant contact with highly corrosive substances. This assessment will confirm if its chemical resistance is sufficient.

2. Evaluate Humidity and Corrosion Risk

Consider your lab's ambient environment. Facilities in coastal regions or areas with high humidity may increase the risk of corrosion if the casework finish is compromised. In these conditions, an enhanced pretreatment or a more robust powder coat may be advisable. For extreme environments, stainless steel is a more suitable long-term solution.

3. Determine Storage Types and Load Requirements

Think about what you will store. Standard steel cabinet drawers are typically rated for 100 to 150 pounds, suitable for glassware and most supplies. If you need to store heavy equipment or bulk materials, specify heavy-duty drawer slides and reinforced shelving. Matching load capacity to your inventory is critical for safety and durability.

4. Plan for Flexibility and Reconfiguration Needs

Decide if your lab layout needs to be adaptable. Fixed casework is permanently installed for maximum stability. In contrast, modular or mobile cabinets on casters allow you to reconfigure your space as projects and equipment change. Many labs use a hybrid approach with fixed perimeter cabinets and mobile islands.

5. Review Budget, Lead Time, and Service Integration

Finally, align your selection with your project's budget and timeline. Painted steel casework generally has a lower upfront cost and shorter lead time than stainless steel. Plan for the integration of services like power, data, and plumbing. The performance of your casework is also affected by the benches and worktops you pair it with. Explore options for lab workstations and tables and lab bench systems to create a complete solution.

Comparing Lab Casework Materials

Choosing the right material involves balancing performance, application, and budget. Here is how painted steel compares to other common options.

Painted Steel Casework

Painted steel casework in a modern lab setting.

This is the standard for many labs due to its blend of durability and value. A powder coat finish provides a hard, non-porous surface that withstands daily use and is easy to clean.

  • Strengths: High impact and abrasion resistance, good resistance to mild chemicals and solvents, and cost-effective.
  • Limits: The finish can be scratched or chipped, potentially exposing the steel to corrosion. It is not suitable for highly corrosive environments.
  • Best For: General research, educational, and light industrial labs.
  • Cleaning: Use mild detergent and water or compatible disinfectants.
  • Cost: Moderate.
  • Choose this if: You need durable, cleanable, and budget-friendly storage for a typical lab environment.

Stainless Steel Casework

Stainless steel is the premium choice where sterility and corrosion resistance are critical. It is the standard for cleanrooms, vivariums, and labs using harsh chemicals.

  • Strengths: Exceptional resistance to corrosion, acids, and bases. It can be repeatedly sterilized without degradation.
  • Limits: Significantly higher cost and can be prone to cosmetic denting.
  • Best For: Sterile processing, biological applications, cleanrooms, and high-corrosion labs.
  • Cleaning: Compatible with aggressive sterilization methods.
  • Cost: High.
  • Choose this if: Your work demands maximum hygiene and resistance to aggressive chemicals.

Wood/High-Pressure Laminate (HPL) Casework

Wood casework provides a traditional aesthetic and is often used in dry labs or instrumentation rooms. The HPL surface offers decent chemical resistance.

  • Strengths: Good vibration dampening for sensitive instruments and a warm appearance.
  • Limits: The wood core is susceptible to moisture damage, swelling, and microbial growth if the surface is compromised.
  • Best For: Dry labs, physics labs, instrumentation rooms, and educational spaces.
  • Cleaning: Use non-abrasive cleaners; avoid soaking with water.
  • Cost: Moderate to high.
  • Choose this if: You are outfitting a dry environment where aesthetics and instrument stability are priorities.

Phenolic/Polypropylene Specialty Storage

These materials are specified for the most demanding applications. Phenolic resin and polypropylene offer superior resistance to a wide array of highly corrosive chemicals.

  • Strengths: Outstanding chemical resistance, completely waterproof, and highly durable.
  • Limits: Highest cost and requires specialized fabrication and installation.
  • Best For: Acid digestion labs, wet process areas, and facilities with extreme chemical exposure.
  • Cleaning: Can withstand harsh cleaning agents.
  • Cost: Very high.
  • Choose this if: Your work involves constant contact with highly corrosive chemicals. Review all casework options to see the full range.

Configuration Options for Painted Steel Casework

A modern laboratory with white painted steel casework, showing base cabinets, wall cabinets, and an integrated bench.

Painted steel casework is a modular system that can be configured to meet specific laboratory workflows. Combining different cabinet types creates an efficient and organized workspace.

  • Base Cabinets: These form the foundation for countertops and provide under-counter storage with door, drawer, or combination units.
  • Wall Cabinets: Mounted above work surfaces, they offer easy access to frequently used glassware and reagents. Options include solid or glass doors.
  • Tall Cabinets: Floor-to-ceiling units provide maximum storage capacity for bulk supplies, equipment, or personal protective equipment (PPE).
  • Mobile Cabinets: Set on heavy-duty casters, these units offer flexible storage that can be moved where needed.
  • Specialty Units: Sink base cabinets, fume hood bases, reagent shelving, and pegboards integrate directly into the casework system.
  • Power and Data: Service raceways and cutouts for electrical and data ports can be integrated into the casework and benching.

Pairing fixed perimeter casework with modular lab benches creates a highly effective mixed fixed-mobile layout, allowing for future flexibility.

Finish and Corrosion Protection

The longevity of painted steel casework depends on its finish. The process begins with heavy-gauge steel, typically 16 or 18 gauge, which is chemically pretreated to clean and etch the surface for adhesion.

A powder coat finish is then applied electrostatically, ensuring an even layer of polymer particles covers all surfaces. The parts are cured in an oven, where the powder melts and fuses into a hard, durable shell that resists chipping, scratching, and mild chemical exposure. Standard colors include white, grey, and black, with custom colors often available. For coastal or highly corrosive environments, an enhanced pretreatment or a move to stainless steel is recommended. Review the various finishes for steel cabinets.

Integration with Benches and Work Surfaces

Painted steel casework integrates seamlessly with common lab work surfaces and bench frames. Cabinets can be mounted to lab bench systems or installed as a standalone base for countertops like epoxy resin, phenolic resin, or stainless steel.

Proper integration includes planning for service integration, such as plumbing and electrical in service raceways. For facilities in seismic zones, casework must be securely anchored to the floor and walls according to local building codes to ensure stability. This creates a cohesive and functional workspace from our full line of lab workstations and tables.

Material Chemical Resistance Corrosion Resistance Cleanability Impact/Abrasion Flexibility Typical Use Cases Approx. Cost Tier Notes
Painted Steel Good Moderate Excellent Excellent High General research, education, light industrial, dry labs $$ Best overall value for most applications.
Stainless Steel Excellent Excellent Superior Good High Cleanrooms, biological, sterile, high-corrosion areas $$$$ Required for sterile or highly corrosive labs.
Wood/HPL Moderate Poor Good Moderate Moderate Dry labs, instrumentation rooms, educational labs $$$ Prone to moisture damage if core is exposed.
Phenolic/Polypropylene Superior Excellent Excellent Excellent Low Harsh chemical, high-moisture, acid digestion labs $$$$$ For extreme chemical environments.

Ready to plan your lab layout? Compare our full range of casework options to find the perfect fit.

Case Example: Mineral and Geology Labs

Painted steel casework is an excellent choice for demanding environments like geology labs. For example, a mineral lab requires storage that can handle heavy rock samples and resist abrasion from dust and grit. The durability and high load capacity of steel cabinets make them ideal for this application. You can see a mineral lab casework example to understand how painted steel provides a practical and long-lasting solution in this setting.

Maintenance and Lifecycle

Proper care extends the life of your investment. For daily cleaning, use a soft cloth with mild detergent and water. Most powder coat finishes are compatible with common disinfectants like 70% isopropyl alcohol and 10% bleach solutions, but always rinse after using bleach.

Avoid abrasive cleaners or scouring pads that can scratch the finish. Address any deep scratches that expose the steel with a manufacturer-provided touch-up paint kit to prevent rust. Periodically check that hinges, drawer slides, and locks are functioning smoothly. With routine care, painted steel casework can provide decades of reliable service.

Frequently Asked Questions

1. Is painted steel casework chemical resistant enough for my lab?
It is resistant to spills of mild acids, bases, solvents, and common reagents. It is not intended for prolonged contact with harsh, corrosive chemicals. Always wipe up spills promptly.

2. How does the powder coat hold up to bleach and other disinfectants?
The finish is highly resistant to disinfectants like 70% alcohol and 10% bleach solutions. To preserve the finish, it is good practice to rinse surfaces with water after cleaning with bleach.

3. Can I reconfigure painted steel casework after installation?
Only modular or mobile casework is designed for reconfiguration. Fixed casework is permanently installed and cannot be easily moved. Many labs use a combination of both.

4. What steel gauges are common and why do they matter?
Most casework bodies use 18-gauge steel, while high-stress components like frames may use heavier 16-gauge steel. A lower gauge number means thicker, more durable steel, which prevents denting and ensures a longer service life.

5. How do I choose between a toe-kick and leg levelers?
A toe-kick provides a built-in look and prevents debris from accumulating underneath cabinets. Leg levelers lift the cabinet off the floor, allowing for easier cleaning underneath, which can be a requirement in certain labs.

6. What are typical lead times for painted steel casework?
Standard configurations and colors often have lead times of 4 to 8 weeks. Custom orders may take 8 to 12 weeks or more. Confirm timelines with your supplier, especially when coordinating with other items like lab workstations and tables.

Conclusion: A Durable and Practical Choice for Modern Labs

Painted steel casework is the right choice for facilities that need a durable, cleanable, and cost-effective storage solution. Its modular design and wide range of configurations make it adaptable to nearly any general research, educational, or light industrial laboratory. When paired with the appropriate work surfaces and a thoughtful layout, this powder coated casework provides a reliable foundation for a safe and efficient workspace. When planning your facility, consider how to integrate modular lab benches for a flexible and productive environment.

Ready to find the right storage for your lab? Compare our full line of casework options or request a quote to start planning your layout today.